Sweet Corn Production

J.E. Motes
Extension Vegetable Specialist

Warren Roberts
Associate Professor, Vegetables

Bob O. Cartwright
Extension Insect Management

Production Requirements

High quality sweet corn is a very popular vegetable. Small-scale production can be sold directly on the farm or at roadside stands, farmer’s markets or local stores. Large-scale production requires a considerable investment in harvesting equipment and packing and hydrocooling facilities to prepare shipments to terminal markets or supermarket distribution centers. Sweet corn is a warm season crop, easily killed by frost. It is subject to serious injury if exposed to prolonged cool temperatures of several degrees above freezing. Growing conditions in central Oklahoma provide about a 6-week harvest period beginning in early June and ending in mid-July. High temperatures, which normally occur in early July, interfere with pollination and prevent season-long production. Corn earworm is a serious insect pest, and sweet corn production should not be attempted without an adequate insecticide spray program during the silking to harvest stages of crop development. Fall production is possible, however an intense insect control program throughout crop development is necessary. A good yield of sweet corn in Oklahoma is 1,000 dozen ears (200 bu) per acre.

Site and Soils

Sweet corn grows on a wide range of well-drained sites and soils. For early production choose sandy soils that can be plowed early and are not subject to late spring frosts.

Varieties

Sweet corn varieties are often classified by seed color and by maturity date. Another feature which has become increasingly important in selecting a sweet corn variety is the nature of its sweetness. The sweetness in normal sweet corn, modified sugary sweet corn, and supersweet corn comes from different genes.

Normal sweet corn (e.g. Merit) has the recessive version of the “sugary-1” gene (su_). Modified sugary sweet corn (e.g. Snowbelle) has the sugar-enhancer gene (se) which increases the sugar content of the kernel by modifying the sugary-1 gene. Supersweet corn (e.g. Summer Sweet 7200) has a higher sugar content than normal sweet corn or modified sugary sweet corn because of its shrunk-2 gene (sh_). Supersweet types compared to normal or modified sugary types are higher in sugar, tougher skinned, lower in starch, and retain their quality longer after harvest. The seed of supersweet types may not germinate as well as normal or modified sugary types particularly in cold soils. They also have smaller, more brittle seeds, which crack easily if mishandled. Growers should make small trial plantings initially to determine performance under specific conditions.

Genes affecting sweetness are recessive. If varieties having these “sweet” genes are pollinated by varieties having the dominant forms of these genes, sweetness will be lost. Table 1 summarizes isolation requirements of the various types. Reduce the risk of undesirable cross-pollination by separating stands of different types of sweet corn by at least 250 feet or by planting so the flowering occurs at different times (i.e. the silk on one variety is dry before or after the tassel on another develops).

If isolation space is limited, plant the most affected variety on the upwind side of the field. Separate the plantings with at least 4 to 6 border rows. If the corn is offered for sale, check the product regularly to ensure that cross-pollination has not occurred.

Some of the sweet corn varieties which have performed well in Oklahoma trials are described in Table 2.

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Standard Sugary</th>
<th>Sugary enhanced</th>
<th>Supersweet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>OK</td>
<td>OK</td>
<td>STARCHY</td>
</tr>
<tr>
<td>Sugary</td>
<td>OK</td>
<td>OK</td>
<td>STARCHY</td>
</tr>
<tr>
<td>Enhanced</td>
<td>STARCHY</td>
<td>STARCHY</td>
<td>OK</td>
</tr>
</tbody>
</table>

*OK indicates that cross-fertilization will either have no effect on flavor, or, at worst, the kernels will taste like a normal standard sweet corn. STARCHY indicates that isolation is required because cross-fertilization will result in starchy, inedible kernels.
Table 2. Sweet corn varieties for Oklahoma.

<table>
<thead>
<tr>
<th>Type*</th>
<th>Relative Days to Hrst</th>
<th>Kernel Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aztec</td>
<td>su₁ 77</td>
<td>Yellow</td>
</tr>
<tr>
<td>Merit</td>
<td>su₁ 79</td>
<td>Yellow</td>
</tr>
<tr>
<td>Pinnacle</td>
<td>sh₂ 80</td>
<td>Yellow</td>
</tr>
<tr>
<td>Summer Sweet 7200</td>
<td>sh₂ 83</td>
<td>Yellow</td>
</tr>
<tr>
<td>Commanche</td>
<td>su₁ 83</td>
<td>Yellow</td>
</tr>
<tr>
<td>Apache</td>
<td>su₁ 83</td>
<td>Yellow</td>
</tr>
<tr>
<td>Summer Sweet 7600</td>
<td>sh₂ 83</td>
<td>Yellow</td>
</tr>
<tr>
<td>Florida Stay sweet</td>
<td>sh₂ 86</td>
<td>Yellow</td>
</tr>
<tr>
<td>Summer Sweet 7800</td>
<td>sh₂ 86</td>
<td>Yellow</td>
</tr>
<tr>
<td>Snowbelle</td>
<td>se 79</td>
<td>White</td>
</tr>
<tr>
<td>Summer Sweet 8600</td>
<td>sh₂ 79</td>
<td>White</td>
</tr>
<tr>
<td>Comet</td>
<td>su₁ 80</td>
<td>White</td>
</tr>
<tr>
<td>Silver Queen</td>
<td>su₁ 90</td>
<td>White</td>
</tr>
<tr>
<td>Harmony</td>
<td>su₁ 80</td>
<td>Bicolor</td>
</tr>
<tr>
<td>Summer Sweet 8502</td>
<td>sh₂ 83</td>
<td>Bicolor</td>
</tr>
<tr>
<td>Dandy</td>
<td>su₁ 85</td>
<td>Bicolor</td>
</tr>
</tbody>
</table>

*su₁ = normal or standard
se = sugar enhanced
sh₂ = supersweet, must be isolated from su₁ and se types.

Early varieties often produce smaller ears and have poorer eating quality than those that mature later. Days to maturity, as listed in seed catalogs, are only guides. The actual number of days required to reach harvest quality will be greater in cool, dry weather. Make trial plantings of new varieties to determine if they offer some advantage over currently grown varieties.

Soil pH and Fertilizer

Apply lime to maintain a soil pH between 6.0 and 6.5 if pH is low. Based on OSU soil test results, the following quantities of P₂O₅ and K₂O are recommended:

Phosphorus

<table>
<thead>
<tr>
<th>When test shows</th>
<th>0-19</th>
<th>20-39</th>
<th>40-69</th>
<th>70+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add lbs. P₂O₅/A</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td>none</td>
</tr>
</tbody>
</table>

Potassium

<table>
<thead>
<tr>
<th>When test shows</th>
<th>0-59</th>
<th>60-99</th>
<th>100-149</th>
<th>150-199</th>
<th>200-249</th>
<th>250+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add lbs. K₂O/A</td>
<td>200</td>
<td>150</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>none</td>
</tr>
</tbody>
</table>

Nitrogen - Apply 50 lb/A N with the P₂O₅ and K₂O fertilizer, as shown in the preceding tables, at preplant or planting. Sidedress or topdress 60 lbs/A N when corn is one foot high. Additional N may be needed to produce dark green husks for good market quality. Soils with available zinc levels below 0.8 ppm may need zinc included in the preplant fertilizer to promote good sweet corn growth under cool, wet conditions. For additional information on fertilizing, consult Extension Fact Sheet F-6000, available at your county Extension office.

Spacing and Planting

Plant 10 to 12 lbs/A of graded seed in rows 36 to 38 inches apart. Space early varieties 8 to 10 inches apart in the row (20,000 plants/A) and the remaining varieties 10 to 12 inches apart in rows (14,000 plants/A). Planting depth should be about one inch in loamy soils and one to two inches in sandy soils. Planting of individual varieties should be at least four rows wide to ensure good pollination.

When planting early, use only early varieties as they are normally more vigorous under cool temperatures. Germination does not occur at soil temperatures below 50°F and is poor below 60°F. Use normal varieties for the earliest plantings, and delay planting of sugar-enhanced or supersweet varieties until soils have warmed. When there is less danger of frost damage, plant the full range of varieties (early, mid-season, and late). Successive plantings should be made using either the mid-season or late varieties that have adequate ear size. After the ears reach maturity, prime quality is maintained for two or three days in the field depending on temperature. The last planting in the spring should be made so that the crop will mature no later than mid to late July. Sweet corn planted too late pollinates poorly due to high summer temperatures during silking and pollination.

Weed Control

Both mechanical and chemical weed control methods are recommended. Consult the most recent revision of OSU F-6008 and the latest edition of the Extension Agent’s Handbook for specific recommendations.

Insects

Sweet corn seed should be treated with an insecticide or have one applied at planting for protection from seed corn maggots. Cutworms also attack corn early in the season; however, control is usually applied postemergence as the need arises. The most damaging and prevalent insect is the corn earworm. Earworms occur in large numbers in the spring and are most numerous in the fall. Controls should be started when silks appear and continued up to harvest. Corn planted in the fall should be inspected as soon as it emerges for fall armyworms. The fall armyworm feeds in the whorl and is capable of destroying entire plantings. For specific insect control measures, see the latest edition of the Extension Agents’ Handbook.

Diseases

Sweet corn seed should be treated with a fungicide to protect against seed rot and damping-off. Corn leaf blights can attack corn but are usually not major problems. Leaf rust and occasionally some smut is present in corn plantings but does little economic damage. Bacterial wilt, transmitted by the corn flea beetle, can be a problem on early varieties. Maize dwarf mosaic virus, transmitted by aphids from johnsongrass, can severely stunt corn and cause economic loss. For specific disease control measures, see the latest edition of the Extension Agents’ Handbook.
Irrigation

Moisture is needed for effective herbicide activity and during the early stages of germination and plant emergence. Soil moisture is also critical during silking and ear development. Supplemental irrigation should be provided to meet the moisture requirement at least during these critical periods.

Harvesting and Handling

Sweet corn has a very short period of optimum harvest maturity, and quality changes rapidly prior to and following the peak. Unfortunately, appearance of unhusked ears provides little indication of optimum harvest maturity. Condition of the silks can be used as an indicator of immaturity; sweet corn should not be harvested before the silks are dry and brown. Ears harvested immature will have small diameter, poor cob fill, and kernels that are watery and lack sweetness. At optimum harvest maturity the kernels are plump, sweet, milky, tender, and nearly maximum size. After optimum harvest maturity has been reached, eating quality of sweet corn begins to decrease rapidly, while husk appearance changes very little. Overmature corn is starchy rather than sweet, tough, and the kernels are often “dented.” In yellow colored varieties, kernels will be deep yellow rather than pale yellow. Sweet corn is often harvested too late for maximum eating quality. Ears harvested with a few immature kernels at the tip half-inch will result in sweeter and more tender corn than if tip kernels are full size.

Sweet corn may be harvested either by hand or mechanical harvester. Selection of harvest method depends on desire of the grower, availability of labor, size of the operation, etc. Harvesting in a once-over system, either by hand or mechanically, results in much greater variability in maturity of the ears and requires more sorting and grading following harvest. Multiple hand harvests allow for some selection of marketable ears and reduces the amount of grading.

Freshly harvested sweet corn is highly perishable and eating quality deteriorates rapidly. Effective temperature management is critical to the maintenance of sweet corn quality. The loss of sweetness due to conversion of sugars to starch is most rapid at high temperature. At 86°F, 60 percent of the sugar may be converted to starch in 24 hours; whereas, at 32°F, sugar content would decrease only 6 percent. Ideally, sweet corn should be cooled to 32°F within 1 hour after harvest and held at 32°F until consumed. Although cooling to 32°F within 1 hour after harvest is rarely possible, any steps taken to keep ear temperature as low as possible are beneficial to sweet corn quality.

Temperature management should begin with the time of harvest. Sweet corn harvested in the early morning when air and ear temperatures are lowest will deteriorate less rapidly and require less cooling than corn harvested during the later part of the day. Keeping sweet corn in the shade will prevent heating by the sun. Minimizing bulk handling of sweet corn will reduce heating. Icing or spraying with water will help to reduce ear temperature and inhibit moisture loss. Long shanks and flag leaves should be trimmed to reduce moisture loss and subsequent denting of the kernels. If sweet corn is to be marketed locally, it is best to make frequent small harvests so that holding time is minimized.

If sweet corn is to be shipped to distant markets, it must be packed in wirebound crates, precooled to remove field heat, top iced, and held under refrigeration at 32°F through the distribution system. Even under optimum conditions, normal sweet corn varieties will not maintain marketable quality for more than 5-8 days. The supersweet varieties will maintain good quality for 10-12 days postharvest.

The following publications are referenced in this fact sheet:

F-6000 Fertilizing Commercial Vegetables
F-6008 Weed Control in Vegetables
C-827 Commercial Vegetable Insect, Disease, and Weed Control

All are available at your County OSU Extension office.
The Oklahoma Cooperative Extension Service

Bringing the University to You!

The Cooperative Extension Service is the largest, most successful informal educational organization in the world. It is a nationwide system funded and guided by a partnership of federal, state, and local governments that delivers information to help people help themselves through the land-grant university system.

Extension carries out programs in the broad categories of agriculture, natural resources and environment; family and consumer sciences; 4-H and other youth; and community resource development. Extension staff members live and work among the people they serve to help stimulate and educate Americans to plan ahead and cope with their problems.

Some characteristics of the Cooperative Extension system are:

- It provides practical, problem-oriented education for people of all ages. It is designated to take the knowledge of the university to those persons who do not or cannot participate in the formal classroom instruction of the university.
- It utilizes research from university, government, and other sources to help people make their own decisions.
- More than a million volunteers help multiply the impact of the Extension professional staff.
- It dispenses no funds to the public.
- It is not a regulatory agency, but it does inform people of regulations and of their options in meeting them.
- Local programs are developed and carried out in full recognition of national problems and goals.
- The Extension staff educates people through personal contacts, meetings, demonstrations, and the mass media.
- Extension has the built-in flexibility to adjust its programs and subject matter to meet new needs. Activities shift from year to year as citizen groups and Extension workers close to the problems advise changes.

The Cooperative Extension Service is the largest, most successful informal educational organization in the world. It is a nationwide system funded and guided by a partnership of federal, state, and local governments that delivers information to help people help themselves through the land-grant university system.

Some characteristics of the Cooperative Extension system are:

- The federal, state, and local governments cooperatively share in its financial support and program direction.
- It is administered by the land-grant university as designated by the state legislature through an Extension director.
- Extension programs are nonpolitical, objective, and research-based information.

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, gender, age, religion, disability, or status as a veteran in any of its policies, practices, or procedures. This includes but is not limited to admissions, employment, financial aid, and educational services.

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert E. Whitson, Director of Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma. This publication is printed and issued by Oklahoma State University as authorized by the Vice President, Dean, and Director of the Division of Agricultural Sciences and Natural Resources and has been prepared and distributed at a cost of 20 cents per copy. 0606 GH.
In sweet corn (Figure 3), mutations can affect genes that control starch production in the endosperm, causing sugars to accumulate in the immature kernel. These genetic differences produce five main types of sweet corn: sugary-1 (su1), sug-ary enhanced (se), supersweet or shrunken-2 (sh2), Hawaiian brittle (bt1 and bt2), and ADX Pennfresh types. Sweet corn production is based on continuous harvest in both fresh market and processing areas. Since the time between planting and harvest depends primarily upon temperatures, preseason planting schedules are generally based on the use of heat units (degree days). This has substantially lowered the fossil fuel energy used in sweet corn production. Many sweet corn fields now receive one or no cultivations at all.

Introduction. Field corn was grown in North America before 200 BC. Field corn is produced primarily for animal feed and industrial uses such as ethanol, cooking oil, etc. In contrast, sweet corn is produced for human consumption as either a fresh or processed product. The specific time when sweet corn originated cannot be pinpointed; however, sweet corn was grown by the American Indian and first collected by European settlers in the 1770s. The first variety, Papoon, was acquired from the Iroquois Indians in 1779.