Augmented Reality Bibliography


ARGOS Virtual Pointer Camera Calibration Procedure. WWW page = http://vered.rose.utoronto.ca/people/david_dir/POINTER/ Calibration.html


Azuma, R. and Bishop, G. (1994). Improving Static and Dynamic Registration in an Optical See-Through HMD. In *Proceedings of SIGGRAPH ’94*, (pp. 197-204): ACM SIGGRAPH.


Van Laerhoven, K. and Cakmakci, O. (2000). What shall we teach our pants? In *Proc. ISWC '00 (Fourth Int. Symp. on Wearable Computers)*, pages 77-83, Atlanta, GA.


1.1.2. Augmented reality and industrial applications

1.1.3. VR-AR for industrial renewal

1.1.4. And what about augmented reality?

1.2. Computer-assisted surgery

1.2.1. Introduction

1.2.2. Virtual reality and simulation for learning

1.2.3. Augmented reality and intervention planning

1.2.4. Augmented reality in surgery

1.5. Bibliography

Chapter 2. The Democratization of VR-AR

Sébastien KUNTZ, Richard KULPA and Jérôme ROYAN.

2.1. New equipment


Spatial Augmented Reality is a rapidly emerging field which concerns everyone working in digital art and media who uses any aspects of augmented reality and is interested in cutting-edge technology of display technologies and the impact of computer graphics. Augmented reality (AR) is an interactive experience of a real-world environment where the objects that reside in the real-world are enhanced by computer-generated perceptual information, sometimes across multiple sensory modalities, including visual, auditory, haptic, somatosensory and olfactory. The overlaid sensory information can be constructive (i.e. additive to the natural environment), or destructive (i.e. masking of the natural environment). This experience is seamlessly interwoven with the