Klaipeda Cardiovascular Emergency Aid Services Correlate With 10 Cosmo-Physical Parameters by Time of Occurrence

Stoupel E, Abramson E, Drungiliene D, Martinkenas A
Sulkas J, Zhemaityte D

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Klaipeda Cardiovascular Emergency Aid Services Correlate With 10 Cosmo-Physical Parameters by Time of Occurrence

E. Stoupel¹, D. Zhemaityte², D. Drungiliene³, A. Martinkenas², E. Abramson⁴, J. Sulkes⁴

6,600 cardiovascular emergencies treated during 36 consecutive months at a first aid station in Klaipeda, Lithuania, were compared to monthly intensity-levels of 10 environmental cosmo-physical parameters linked to solar and geomagnetic (GMA) activity, radio wave propagation, ionisation hours of the ionosphere and high-energy (>90 MeV) space proton flux. The study checked possible correlations established in previous investigations between the occurrence and intensity of natural phenomena and the frequency and time of deaths among hospital patients.

Myocardial infarction, angina pectoris attacks, paroxysmal tachycardia, sudden death and, to a lesser degree, stroke all exhibited highly significant correlations with environmental parameters. Rhythm disturbances were highly negatively correlated with solar and geomagnetic activities as well as with radio wave propagation and positively with proton flux (except stroke).

For most events, the numbers of cardiovascular emergencies treated at the first aid station correlate significantly with the monthly intensity-levels of solar and geomagnetic activities and of high-energy proton flux. Proton flux was inversely correlated with solar and geomagnetic activities and with radio wave propagation. A negative correlation of solar and geomagnetic activity with some of the studied factors may be attributable to the influences of high-energy space proton flux on the pathogenesis of the studied pathologies. J Clin Basic Cardiol 2002; 5: 225–7.

Key words: cardiovascular, angina pectoris, myocardial infarction, paroxysmal tachycardia, cosmo-physical activity

Material and Methods

This study is based on medical data gathered during 36 consecutive months at a first aid station in the city of Klaipeda, Lithuania. 6,600 emergencies were included in this study (myocardial infarction: 472; paroxysmal tachycardia: 885; angina pectoris: 4,071; stroke: 656; sudden death: 516). The considered time-interval was randomly chosen and not intentionally selected. However, the studied time-interval yields two positive aspects: 1.) It was before the recent socioeconomic changes in eastern Europe significantly affected many parameters of everyday life, health, longevity etc. 2.) For comparisons, we not only had access to the monthly cosmo-physical data from scientific institutions in the USA [8–10] but also to data from the Soviet (now Russian) Academy of Sciences [11] which, despite our efforts, became unavailable to us after 1989.

Each month, Pearson correlation coefficients (r) and their probabilities (p) were calculated for cardiovascular emergencies and 1.) month of the year (1–12), 2.) index (K) of geomagnetic activity (GMA), 3.) hours of positive (+) ionisation of the ionosphere, 4.) hours of negative (−) ionisation of the ionosphere, 5.) sunspot number (W), 6.) solar flux (2800 MGH; 10.7 cm), 7.) sudden magnetic disturbances of the ionosphere (Sd), 8.) index of minimal radio wave propagation in the early morning hours (Fof2 min.), 9.) index of maximal radio wave propagation in the noon hours (Fof2 max.) and 10.) space proton flux at an energy level > 90 MeV.

Results

The results of this correlative study are presented in Table 1, demonstrating:

1.) Monthly correlations with months 1–12 are insignificant.

2.) The monthly GMA-index K is significantly negatively correlated with anginal attacks and negatively correlated at a strong-trend level (90 % probability) with myocardial infarction.

3.) There is a definite positive correlation (86–88 %-level) between stroke and sudden death with hours of positive monthly ionisation of the ionosphere.

4.) Angina pectoris is negatively correlated at the 95 % probability-level with monthly hours of negative ionisation of the ionosphere.

5.) Save for stroke, all events analyzed in this study turned out to be negatively correlated with solar activity parameters. For myocardial infarction and paroxysmal tachycardia the results were significant, for angina pectoris and sudden death they were at the strong-trend level (94–95 % probability).

6.) Both, myocardial infarction and paroxysmal tachycardia were also inversely related to sudden magnetic disturbances of the ionosphere, the former highly significantly the latter at a strong-trend level (94.2 %).

7.) All studied events were negatively correlated with the minimal (early morning) radio wave propagation index (Fof2 min.), paroxysmal tachycardia also with the maximal (noon hours) radio wave propagation index (Fof2 max.).
Remarkably, in a previous study conducted in a big university hospital in Israel between 1974 and 1989 (180 consecutive months), the maximal (noon hours) radio wave propagation index (F02 max.) was most strongly associated with hospital deaths from myocardial infarction. Excluding stroke, all other events were highly significantly correlated with monthly space proton flux at the > 90 MeV energy level.

Some emergencies were correlated with each other by the time (monthly) of their occurrence:

1. Myocardial Infarction with: a) stroke (r = 0.33; p = 0.04), b) angina pectoris attacks (r = 0.61; p = 0.0001), c) sudden death (r = 0.294; p = 0.08), d) chronic disease exacerbation (r = 0.424; p = 0.0099).

2. Sudden death with: a) myocardial infarction (r = 0.294; p = 0.08, trend), b) anginal attacks (r = 0.39; p = 0.019), c) paroxysmal tachycardia (r = 0.348; p = 0.038).

3. Angina pectoris attacks with: a) myocardial infarction (r = 0.613; p = 0.0001), b) sudden death (r = 0.39; p = 0.019), c) chronic disease exacerbation (r = 0.351; p = 0.035).

4. Paroxysmal tachycardia with: a) sudden death (r = 0.35; p = 0.038), b) chronic disease exacerbation (r = 0.292; p = 0.08, trend).

(For paroxysmal tachycardia: 1983–84.)

Discussion

It has been previously observed [14–17] that not only is the time of death from various cardiovascular events related to certain levels of physical environmental activity but also the frequency of emergency hospital calls. This data from a first aid station thus provided us with information on the exact time it takes for a given space phenomenon to make its influence felt on the surface of our planet, i.e., to become biologically relevant. Most investigations, including our study, are thus confined to a comparison of clinical data with records of monthly indices of physical activity levels. A noteworthy finding of this study is the negative correlation of clinical events with solar and geomagnetic activity levels [1, 3–5, 15–18]. Negative correlations of paroxysmal atrial fibrillation, of some 24-hours registered types of cardiac arrhythmia and of sudden death [3, 6] with geomagnetic activity levels have already been observed in earlier investigations, the correlation being most conspicuous when clinical events and GMA levels [3, 16, 18] are compared on a daily basis.

Helpful in this study was the comparative data on some additional nine environmental parameters. Our results show that in all cases, except stroke related calls, the inverse correlation with phenomena related to solar and geomagnetic activities (Table 1) is highly significantly correlated with space proton flux at high energy levels (>90 MeV). In our previous studies of space proton flux and its correlation with monthly death frequencies (1991, 1997, 2000) such a relationship was confirmed for >90 MeV, but not for >60 MeV proton flux. It has also been shown that high energy level proton flux is inversely related to monthly solar activity levels (sunspot number, solar flux at 2800 MGH, 10.7 cm wavelength and monthly GMA indices) [19–21], but correlates positively to the level of cosmic rays (described as an “extremely energetic” part of space radiation [12] and “one of the major unresolved questions” in astrophysics [13, 21]).

Previous publications [3, 22] showed that the actual localisation of an acute myocardial infarction (AMI) correlates with certain levels of geomagnetic activity: anterior wall lesions – mostly caused by occlusions in the left coronary artery and regulated by both the sympathetic and the parasympathetic parts of the autonomous nervous system – are more frequent during high GMA levels; inferior wall infarctions – mostly due to right coronary artery occlusions and regulated by the parasympathetic part of the autonomous nervous system only – prevail on days of very low to zero (Io) levels of GMA. Still, in all these studies, the correlations of myocardial infarctions with daily GMA levels were not significant. The results of this study also show such an inverse relationship on trend level without achieving significance. Besides the aspect of AMI-localisation [22], apparently, GMA levels correlate specifically with different age and gender groups. In this study, as in our study on paroxysmal atrial fibrillation [23], it is demonstrated that many signs of electrical heart instability (here united in a group of emergencies named “paroxysmal tachycardia”) are more closely related to low GMA or to the concomitant high energy space proton flux (>90 MeV) – a phenomena

Table 1. Emergency aid activities and links with environmental physical activity, Klaipeda, Lithuania, 1982–1984. Correlation coefficients and their probabilities (p)/36 months data/

<table>
<thead>
<tr>
<th></th>
<th>Myocardial infarction</th>
<th>Paroxysmal tachycardia</th>
<th>Angina pectoris</th>
<th>Stroke</th>
<th>Sudden death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month (1–12)</td>
<td>n = 472</td>
<td>n = 885 (1983–84)</td>
<td>n = 4071</td>
<td>n = 656</td>
<td>n = 516</td>
</tr>
<tr>
<td>Geomagnetic activity index (K)</td>
<td>0.0278</td>
<td>0.01</td>
<td>0.26</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Hours of (+) ionosphere ionisation</td>
<td>0.058</td>
<td>0.001</td>
<td>0.06</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>Hours of (-) ionosphere ionisation</td>
<td>0.058</td>
<td>0.001</td>
<td>0.06</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>Sunspot number (W)</td>
<td>0.51</td>
<td>0.714</td>
<td>0.312</td>
<td>0.319</td>
<td></td>
</tr>
<tr>
<td>Solar flux 2800 MGH, 10.7 cm</td>
<td>-0.436</td>
<td>-0.779</td>
<td>0.06</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Sudden magnetic disturbances – ionosphere</td>
<td>-0.317</td>
<td>-0.716</td>
<td>0.06</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>Radiowave propagat. min. (F02 min), early morning</td>
<td>0.036</td>
<td>0.01</td>
<td>0.06</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>Radiowave propagat. max. (F02 max), noon</td>
<td>0.042</td>
<td>0.01</td>
<td>0.06</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>Space proton flux > 90 MeV</td>
<td>0.596</td>
<td>0.586</td>
<td>0.483</td>
<td>0.364</td>
<td>0.029</td>
</tr>
</tbody>
</table>
The numbers of cardiovascular emergencies in need of physical activity.

This study checks on the correlation between the frequency and pathology by time of occurrence.

Conclusion

This study checks on the correlation between the frequency of cardiovascular events in need of medical emergency attendance and some parameters of environmental physical activity.

8. Solar indices bulletin (monthly). National Geophysical Data Center, NOAA, Boulder, Co, USA.
9. Geomagnetic indices bulletin (monthly). National Geophysical Data Center, NOAA, Boulder, Co, USA.
11. Cosmic Data (monthly). IZMIRAN Institute of the Academy of Sciences of the USSR (now Russian), Moscow District.
Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung