Since 1990, the importance of maps and other graphic representations has become even more important to geography and geographers. This is due, to a large extent, to the development and widespread diffusion of geographic (spatial) technologies. As computers and silicon chips have become more capable and less expensive, geographic information systems (GIS), global positioning satellite (GPS) receivers, and remotely sensed images of Earth from airplanes and satellites have become accessible to geography students and faculty at all levels. These technologies are key research and communication tools for geographers and have significantly increased interest in geography as evidenced by rising enrollments in university undergraduate and graduate programs. Another indication of the growing importance of maps is a rising interest among geographers, psychologists, and cognitive scientists in spatial thinking, the kind of thinking that underpins map reading and interpretation. Spatial thinking is the knowledge, skills, and habits of mind to use spatial concepts, maps and graphs, and processes of reasoning in order to organize and solve problems.

Since 1990, the importance of maps and other graphic representations has become even more important to geography and geographers. This is due, to a large extent, to the development and widespread diffusion of geographic (spatial) technologies. As computers and silicon chips have become more capable and less expensive, geographic information systems (GIS), global positioning satellite (GPS) receivers, and remotely sensed images of Earth from airplanes and satellites have become accessible to geography students and faculty at all levels. These technologies are key research and communication tools for geographers and have significantly increased interest in geography as evidenced by rising enrollments in university undergraduate and graduate programs. Another indication of the growing importance of maps is a rising interest among geographers, psychologists, and cognitive scientists in spatial thinking, the kind of thinking that underpins map reading and interpretation. Spatial thinking is the knowledge, skills, and habits of mind to use spatial concepts, maps and graphs, and processes of reasoning in order to organize and solve problems.

Maps and Map Learning in Social Studies

Sarah Witham Bednarz, Gillian Acheson, and Robert S. Bednarz

Maps are not the whole of geography, but there can be no geography without them. In fact, well-known geographers have often defined their subject around maps and map use. In 1939, Richard Hartshorne stated, “So important is the use of maps in geographic work that ... it seems fair to suggest to the geographer if the problem cannot be studied fundamentally by maps ... then it is questionable whether or not it is within the field of geography.” Fifty years later Peter Haggett expressed the same sentiment even more directly and succinctly: “Geography is the art of the mappable.”

Maps are not the whole of geography, but there can be no geography without them. In fact, well-known geographers have often defined their subject around maps and map use. In 1939, Richard Hartshorne stated, “So important is the use of maps in geographic work that ... it seems fair to suggest to the geographer if the problem cannot be studied fundamentally by maps ... then it is questionable whether or not it is within the field of geography.” Fifty years later Peter Haggett expressed the same sentiment even more directly and succinctly: “Geography is the art of the mappable.”

Since 1990, the importance of maps and other graphic representations has become even more important to geography and geographers. This is due, to a large extent, to the development and widespread diffusion of geographic (spatial) technologies. As computers and silicon chips have become more capable and less expensive, geographic information systems (GIS), global positioning satellite (GPS) receivers, and remotely sensed images of Earth from airplanes and satellites have become accessible to geography students and faculty at all levels. These technologies are key research and communication tools for geographers and have significantly increased interest in geography as evidenced by rising enrollments in university undergraduate and graduate programs. Another indication of the growing importance of maps is a rising interest among geographers, psychologists, and cognitive scientists in spatial thinking, the kind of thinking that underpins map reading and interpretation. Spatial thinking is the knowledge, skills, and habits of mind to use spatial concepts, maps and graphs, and processes of reasoning in order to organize and solve problems.

1. Travelers, hikers, hunters, and fishers frequently use GPS systems to find their locations and to assist them in getting to their destination. These systems are also becoming more common in automobiles.

2. Google, the most popular internet search utility, now offers users maps at virtually any scale desired and, recently, through Google Earth, remotely sensed images that users can view from any direction or angle.

3. Governments and non-governmental organizations (NGOs) typically make information available via printed and, increasingly, online maps. For example, the federal government lets online users map census data; cities and towns post their planning and land-use maps on the internet; and property tax districts post maps of tax rates and assessed values on their websites. NGOs are using “participatory GIS” or web-based GIS mapping tools to allow stakeholders to interactively explore spatial aspects of a wide range of issues, from urban neighborhood revitalization efforts to cleanup decisions at a plutonium production facility.

4. Static and animated maps are much more common in today’s newspapers, magazines, and electronic media than...
they were 20 years ago. As the cost of producing and reproducing maps and images has declined, the media have increased both the amount and the sophistication of the materials they publish. These maps play an important role in both representing and reproducing space. The well-known 2004 election map showing the red (Republican) and blue (Democrat) states (Figure 1) illustrates this. The map has taken on iconic status and reinforces the erroneous view that President Bush’s victory was a landslide. The population-based cartogram constructed by Michael Gastner and colleagues at the University of Michigan (Figure 2) offers a more accurate representation of the vote. In this way, maps and graphics may play a role in legitimating or disputing specific ideologies, beliefs, and practices.

These developments, and more, both allow and require modern citizens to understand spatial information presented on electronic and printed maps and images. For this reason, helping students become competent users and creators of these technologies should be an important element of all of the social studies—maps are not just for geography anymore. This places a new—but welcomed—burden on geography educators to ensure that map learning and spatial thinking are taught and taught well in the social studies. But are they?

Assessing Students’ Knowledge
Assessments indicate that students are not competent map users. An analysis of the 2001 National Assessment of Educational Progress (NAEP) geography exam revealed that at every level (grades 4, 8, and 12) test items that required students to use and interpret maps were the most challenging (see Table 1). At grade 4, nine of the ten most difficult items required map interpretation, construction, or use. For grades 8 and 12, five and seven of the ten most frequently missed questions involved maps.

Teachers’ Goals
One explanation for these low scores is that few social studies teachers are aware of the growing importance of maps, or are prepared and motivated to teach about and with maps. Teaching about maps means providing students with the skills and understandings required to read, interpret, and produce maps. Teaching with maps means using maps to help students learn key social studies concepts and relationships. Teaching with maps enables students to learn through maps—that is, to think spatially—in various reasoning and problem-solving contexts in the classroom and real world.

A recent survey completed by members of the Texas Alliance for Geographic Education provides information about teachers’ attitudes towards maps, how they use maps, and how they teach map skills. These teachers taught elementary (K-5), middle (6-8), and high (9-12) school, and they ranged in classroom experience from one to 38 years with an average of almost 14 years. All were expected to teach map skills as a component of the state-mandated social studies curriculum, which includes geography as a strand from kindergarten to grade 12.

The survey revealed that these teachers’ methods were highly individualized. They used a variety of approaches and materials, including the textbook, workbooks, and self-made worksheets. Three broad approaches to teaching map lessons were identified: employing hands-on activities, repeating lessons periodically, and making the content relevant to students. Teachers described hands-on activities, especially “making” (labeling blank outline maps) maps, as a way for students both to learn about maps and to learn with maps.

When teachers were asked the most important thing students learned from their map lessons, about one-third identified reading, interpreting, and analyzing maps. They expected their students to evaluate the information provided by the maps, to make inferences and decisions based on that information, to gain what one teacher called an “appreciation of spatial perspectives and understanding of spatial dimensions through scale,” and, in the words of another teacher, “to understand the geographic impacts illustrated by the map.” Thus, about one-third of teachers claimed to focus their map lessons on higher-order thinking involving the analysis and interpretation of the information presented on maps.

However, when they were asked to describe the content of their lessons, their responses indicated that they were mainly teaching students to read maps. That is, they taught about latitude and longitude (or teaching students about grids), the five components of maps (title, date, direction, legend, and scale), the different

![Figure 1. Election Results by State.](umich.edu/~mejn/election/)

![Figure 2. Election Results by State in a Population Cartogram.](www-personal.umich.edu/~mejn/election/)

Assessments indicate that students are not competent map users. An analysis of the 2001 National Assessment of Educational Progress (NAEP) geography exam revealed that at every level (grades 4, 8, and 12) test items that required students to use and interpret maps were the most challenging (see Table 1). At grade 4, nine of the ten most difficult items required map interpretation, construction, or use. For grades 8 and 12, five and seven of the ten most frequently missed questions involved maps. But are they?

Assessing Students’ Knowledge
Assessments indicate that students are not competent map users. An analysis of the 2001 National Assessment of Educational Progress (NAEP) geography exam revealed that at every level (grades 4, 8, and 12) test items that required students to use and interpret maps were the most challenging (see Table 1). At grade 4, nine of the ten most difficult items required map interpretation, construction, or use. For grades 8 and 12, five and seven of the ten most frequently missed questions involved maps. But are they?

Teachers’ Goals
One explanation for these low scores is that few social studies teachers are aware of the growing importance of maps, or are prepared and motivated to teach about and with maps. Teaching about maps means providing students with the skills and understandings required to read, interpret, and produce maps. Teaching with maps means using maps to help students learn key social studies concepts and relationships. Teaching with maps enables students to learn through maps—that is, to think spatially—in various reasoning and problem-solving contexts in the classroom and real world. A recent survey completed by members of the Texas Alliance for Geographic Education provides information about teachers’ attitudes towards maps, how they use maps, and how they teach map skills. These teachers taught elementary (K-5), middle (6-8), and high (9-12) school, and they ranged in classroom experience from one to 38 years with an average of almost 14 years. All were expected to teach map skills as a component of the state-mandated social studies curriculum, which includes geography as a strand from kindergarten to grade 12.

The survey revealed that these teachers’ methods were highly individualized. They used a variety of approaches and materials, including the textbook, workbooks, and self-made worksheets. Three broad approaches to teaching map lessons were identified: employing hands-on activities, repeating lessons periodically, and making the content relevant to students. Teachers described hands-on activities, especially “making” (labeling blank outline maps) maps, as a way for students both to learn about maps and to learn with maps.

When teachers were asked the most important thing students learned from their map lessons, about one-third identified reading, interpreting, and analyzing maps. They expected their students to evaluate the information provided by the maps, to make inferences and decisions based on that information, to gain what one teacher called an “appreciation of spatial perspectives and understanding of spatial dimensions through scale,” and, in the words of another teacher, “to understand the geographic impacts illustrated by the map.” Thus, about one-third of teachers claimed to focus their map lessons on higher-order thinking involving the analysis and interpretation of the information presented on maps.

However, when they were asked to describe the content of their lessons, their responses indicated that they were mainly teaching students to read maps. That is, they taught about latitude and longitude (or teaching students about grids), the five components of maps (title, date, direction, legend, and scale), the different
types of maps (e.g., political, economic, physical, or topographic), and locating places. Teachers went on to report the most important skills for their students to learn included way-finding; locating cities, countries, and physical features; and understanding latitude and longitude, scale, direction, and map symbols. Generally speaking, then, their stated higher-order goals were not supported by their lower-order practices.

Map Learning
Researchers from a variety of fields have explored map learning. Geographers, social studies educators, and psychologists have studied how people use maps to organize information and find their way. They have also studied how people create and use mental images, termed “mental maps,” to understand their environments and to organize their knowledge of places. The results of this research should be integrated into curricula and textbooks and understood by teachers in order to improve students’ map learning and spatial thinking.

Three findings are especially important concerning students’ ability to use maps, their ability to understand maps, and the cognitive complexity of map use.

First, even the youngest students possess significant spatial skills, and they can be taught to read and interpret maps and images. Although many parents and teachers are skeptical about the ability of young children to understand and use maps, even elementary school students can use maps effectively. Research shows that young children are surprisingly adept at using maps (and remotely sensed images) to find locations and trace their paths to and from familiar destinations.

Second, children can use maps for more than way-finding. They are able to understand and use symbols and patterns represented by color or shading. A few studies suggest that simple maps can be understood by children even without formal instruction. Some have interpreted these results to mean that certain spatial abilities are innate and that we need not wait until children progress to later developmental stages to introduce them to maps and other spatial representations.

Third, this ‘intuitive’ map learning seems to level off; that is, without formal instruction, students’ map learning plateaus. After all, map interpretation is a complex, multi-stepped cognitive process. One problem is that children and adults cling to a variety of misconceptions about maps and map use. For example, people often misinterpret symbols on maps. Understanding symbols requires abstract thinking and the ability to make generalizations. Point symbols, such as a dot to indicate the location of a city, are frequently assumed by novice map users to indicate size. They understand that a point is a distinct, small, and finite area when, in fact, the boundaries of the city might be much larger than the point on the map. Other map readers interpret point symbols as circles surrounding the location of a city or an area where something is taking place. Graduated symbols that portray the magnitude of a phenomena (i.e., a
town’s population) by using symbols of different sizes further confuse map readers. Even adults often interpret the symbol’s size as a representation of the town’s area, not its population. Thus, the symbol denoting New York City’s population, which is very dense, is misunderstood to indicate that the city covers a large area.

Pictorial symbols, such as the use of a single cow to indicate a region of cattle raising or a derrick to represent an area of oil production, are often used to simplify map interpretation in elementary social studies texts and atlases, yet they frequently confuse young students. For example, the single cow symbol has been interpreted by young learners to represent the presence of one giant cow in an area rather than a cattle-raising region.

A car symbol positioned in an area of automobile production was interpreted variably by young British students as showing the location of a parking lot, the site of a traffic jam, a place where people liked red cars, and as the location of a broken car. The triangle symbol often used to represent mountains can mislead students to think that all mountains have distinct, pointed peaks similar to the symbol.

Color, an important component of maps, is regularly interpreted naïvely as well. The green shading typically used to indicate a region with low elevation is often misunderstood by map readers to represent grassland or forest. Colors on political maps indicating the area of a country can lead to confusion as well; some students associate the color of the country with other assumed attributes of that place when, in fact, the mapmaker selected the color only for cartographic or artistic purposes. Researchers report that individuals react subjectively to color. “Red, for instance is associated with fire, warning, heat, blood, anger, courage, power, love, material force, and Communism.” When Tom Sawyer and Huck Finn are traveling down the Mississippi, Huck thinks they are by the color of the landscape. Tom asks, “You know by the color?” Huck answers, “It’s got everything to do with it. Illinois is green, Indiana is pink.” Incredulously, Tom replies, “Did you reckon the states was the same color out-of-doors as they are on the map?”

In addition to the misconceptions about symbols and color, many map read-

Ten Most Difficult Test Items, NAEP 2002. (Items in italics involve map skills.)

<table>
<thead>
<tr>
<th>Grade 4 Top Ten Most Difficult Test Questions</th>
<th>Grade 8 Top Ten Most Difficult Test Questions</th>
<th>Grade 12 Top Ten Most Difficult Test Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Interpret resource map to determine likely location for large city to develop</td>
<td>• Describe and explain differences in population pyramids</td>
<td>• Use data and maps to explain Mongolia’s economic development</td>
</tr>
<tr>
<td>• Draw map based on written description of its features</td>
<td>• Use a time zone map</td>
<td>• Explain reasons for international trade in oil</td>
</tr>
<tr>
<td>• Identify the mountain range in which Switzerland is located</td>
<td>• Use map to explain international trade in oil</td>
<td>• Explain differences between two countries using population pyramids</td>
</tr>
<tr>
<td>• Use multiple maps to locate states where crops grow year round</td>
<td>• Explain two reasons for high rate of tropical deforestation</td>
<td>• Use atlas to explain regional variations in land use</td>
</tr>
<tr>
<td>• Use map to determine which countries might have a conflict over resources</td>
<td>• Use multiple maps to explain land use in Canada region</td>
<td>• Use map to explain historical shift in center of U.S. population</td>
</tr>
<tr>
<td>• Use multiple maps to compare conditions for farming in two countries</td>
<td>• Recognize the natural forces that cause erosion</td>
<td>• Use map to explain economic impact of Mid-East War</td>
</tr>
<tr>
<td>• Interpret information given on transit map</td>
<td>• Use map to explain historical shift in center of U.S. population</td>
<td>• Use multiple maps to describe regions where most Australians live</td>
</tr>
<tr>
<td>• Find and draw specified route on a transit system map</td>
<td>• Identify purpose of OPEC</td>
<td>• Explain high rate of tropical deforestation</td>
</tr>
<tr>
<td>• Identify a megalopolis on a population map</td>
<td>• Understand and compare different views on land ownership</td>
<td>• Use map and charts to compare urbanization in two European countries</td>
</tr>
<tr>
<td>• Determine elevation of a region on a physical map</td>
<td>• Interpret resource map to determine likely location for large city to develop</td>
<td>• Use a time zone map</td>
</tr>
</tbody>
</table>
ers find it difficult to identify relationships from maps, particularly thematic maps. For example, the relationship between high literacy rates and low infant mortality rates often goes undetected by students because they do not recognize the negative or inverse relationships between variables. Relationships can occur when high values are associated with other high values or when high values are associated with low values, as in this case.

Instruction does make a difference. Several studies confirm that the understanding of maps and how to use them can be improved. Children as young as four or five can be successfully taught about the shape of Earth, directions, Earth-sun relations, and the concept of scale. Instruction using maps as a primary tool can improve the mental maps of seventh-grade students and increase their understanding of the characteristics of places on a worldwide basis. A short, 20-minute session that taught a group of college students basic map terminology and how to read a topographic map improved their performance significantly compared to a group that received no instruction.

As this brief review suggests, research does not provide teachers with a tested method they can adopt to ensure their students' success. Nevertheless, research strongly implies that students can use maps effectively, that appropriate instruction can help them improve their skills, and that instruction should be developed with a full understanding of the difficulties learners experience in map learning and spatial thinking.

A Map Curriculum

The National Geography Standards: Geography for Life (1994), written more than a decade ago under the auspices of the United States Department of Education, specifies the essential subject matter, skills, and perspectives that all people should have to be geographically literate. The standards-setting process gave geography educators an opportunity to reflect on map learning, spatial thinking, and other key aspects of school geography. One goal of Geography for Life was for educators to see maps as a means of communication and to give students opportunities to become fluent in the language of maps.

Maps play a central role in the first three (of 18) standards summarized under the heading Seeing the World in Spatial Terms. Standard 1—how to use maps and other geographic representations, tools, and technologies to acquire, process, and report information from a spatial perspective—is about maps, mapping, and using maps (and other geographic representations such as globes, graphs, diagrams, and aerial- and satellite-produced images) to learn geography. Standard 2—how to use mental maps to organize information about people, places, and environments—is about developing a personal understanding of

STRATFORD, MONTICELLO, AND THE UNIVERSITY OF VIRGINIA

An Invitation to “Live and Learn in Historic Virginia”

Monticello, Stratford, and the University of Virginia invite you to apply for their annual seminar for teachers, “Leadership and Life in Revolutionary America.” Dates for 2007 will be June 24-July 13. Principal “classrooms” are Jefferson’s Monticello and the Lees’ Stratford. However, participants also visit many other Virginia historic sites and stay a week at the historic Jeffersonian area of the University of Virginia known as “the Lawn.”

Six semester hours of graduate credit in history from the University of Virginia will be awarded upon successful completion of the seminar. Tuition includes graduate course fees, room and board, and textbooks.

Now in its 27th year, the seminar is an Award of Merit recipient from the American Association for State and Local History. Applications are available online at www.stratfordhall.org. Application materials must be received by March 1, 2007.

For details, call (804) 493-8038, ext. 1558
email kmcfarland@stratfordhall.org,
fax (804) 493-8006, or write:
Education Office, Stratford,
Stratford, VA 22558.
the locations and characteristics of places (a student’s mental map). Standard 3—
how to analyze the spatial organization
of people, places, and environments on
Earth’s surface—focuses on the ability to
describe and analyze patterns of people,
places, and environments on Earth using
both visual and mental maps.

The National Geography Standards
were built on a foundation of traditional
map components and skills such as read-
ing maps, using scale to determine dis-
tance, and understanding map symbols.
But the document also made recommend-
ations based on the research already
reviewed here that, while not practiced
widely, are essential to our vision of map
learning.

One suggestion was that students
should be able to make maps as well as
read them. For example, the standards
recommended that by the end of fourth
grade, a student should be able to repre-
sent information geographically by read-
ing a story and creating a sketch map to
illustrate it. An example of this skill would
be showing the movement of the family
of ducks through the city of Boston, as
described in the classic children’s book
Make Way for Ducklings.

A second recommendation of the
National Geography Standards was
that students should use maps produced
with new technologies such as GIS and
remote sensing. Maps displaying sat-
tellite imagery (e.g., Google Earth) are
widely available now and becoming very
popular; it was considered important,
even in 1994, that students expand their
map interpretation skills to include
digital maps and images. Although the
standards did not suggest integration
of GIS into K-12 education, its growing
importance was highlighted in an appen-
dix. A more recent National Academy of
Science study explores the role of GIS
in supporting spatial thinking.

A third suggestion addresses social
studies learning in general. Research
suggests that when students read, they
remember information as both word
statements and visual images. This “dual
encoding” can be enhanced when teach-
ers encourage their students to link what
they read to maps and other geographic
representations. For example, every
American fifth-grade student reads
about Paul Revere’s ride, but what is
understood and remembered is ques-
tionable. If students are asked to make
a map of this momentous event showing
the starting point, the opposite shore, the
route of the two riders, and the eventual
destination, Revere’s ride becomes vivid.
Linking what with where, and reading and
thinking with and through maps, makes
content more memorable.

Talking Back to Maps
“Both in the selectivity of their content
and in their signs and styles of representa-
tion, maps are a way of conceiving, articu-
lating, and structuring the human world
which is biased towards, promoted by,
and exerts influence upon particular sets
of social relations.” Just as the quotes
at the beginning of this article represent
the traditional importance of maps to the
discipline of geography, so this quote
from J.B. Harley represents a postmodern
appreciation. Postmodern geographic
thought has had little impact on geo-
graphy education in the elementary and
secondary schools of the United States,

The Mercator map, because it was
designed to preserve on the flat map
characteristics of the round earth useful
to Earth navigators, exaggerates the
sizes of places farther from the equator.
Europe, for example, looks larger than
South America but is actually only half
its size, while Greenland appears as large
as Africa, but is less than 10 percent as
large. By ignoring the needs of naviga-
tors, The Peters Map is able to show true
size relationships, though at the cost of
distorting shapes.

—Denis Wood
but we believe two perspectives of critical cartography are essential components of a revitalized pedagogy of maps and map learning: students and teachers should understand how geographic knowledge is created, and they should understand the purposes of such knowledge.

In the context of maps and map learning, it is important that students and teachers understand that maps are social constructions. Just as texts are written by individuals with varying points of view, and can be read and interpreted in different ways and for different purposes, maps, too, are not objective representations of reality but social productions that can be subjected to critical analysis. Part of any revitalization of map learning, or to use Harley’s phrase, “an increase in levels of carto-literacy,” must include explicit instruction about how to interrogate a map—to consider the conditions under which it was produced, whether it may portray a particular point of view, and what, if any, messages it conveys about power and perspective.

We believe it is essential for students to develop a critical awareness and skepticism about maps as well as other graphics and images. We close with two examples.

During the Cold War, those who wished to emphasize the danger faced by the United States from communism often portrayed global spheres of influence using a Mercator projection. The size of countries on this type of map is exaggerated as one moves toward the poles. Thus, using this map to depict Eastern Europe, China, and the USSR (often in a bright symbolic red color) made this northerly region seem larger and more menacing than it would have on a map that represented areas more realistically.

Choosing where to center a map also conveys the point of view of the map-maker. Harley points out that centering this same Mercator projection on Europe strongly supported Europeans’ view of their global hegemony. This view makes it appear that “two-thirds of the Earth’s surface lie in high latitudes,” the location of Europe. At the same time “the colonies inhabited by coloured peoples are shown too small.” The practice of putting oneself at the center of the map is still common. Most American textbook maps in use today show the world with the North American-European core at the center, dividing the Pacific Rim in half and assigning it to the edges of the map. Not surprisingly, Japanese textbook maps frequently center on the Pacific basin splitting the Atlantic Ocean in half and assigning it to the map’s edges.

Here are three strategies to help students become more critically “carto-literate”:

1. Have students take a problem solving approach by asking them to map a phenomenon, such as murders in the United States, in two ways. First, have them (inappropriately) plot the total number of murders by state. Then after dividing the number of murders by the states’ populations, ask students to map the per...
capita murder rate. Ask why the latter is more appropriate if one is interested in comparing the murder rate between states. By linking how a map is created to its purpose, students should gain a better sense of ways maps can distort relationships.

2. Have students take an inquiry approach to understand the characteristics of map projections. The objective is to comprehend how projections affect the information maps convey and the conclusions that can or cannot be reached from maps with various projections. Ask students to compare the size of northern regions (e.g., Canada, Russia, Greenland) on world maps with different projections such as the Mercator, the Robinson, and the Peters (see Peters Pacific-Centered map on page 400). Which maps show (relative) sizes most accurately? Which show shape or distance more accurately? Ask students how map readers might be confused or misled if an inappropriate map projection is chosen.

3. Combine problem solving with inquiry by requiring students to collect examples of maps from a range of local, national, and international sources, including newspapers and magazines. Display the maps and guide students’ evaluation of them, questioning the maps’ social and political purpose(s), perspectives, biases, and possible distortions. By reflecting on the assumptions made in producing each map, students may develop the habit of mind to view maps critically.

Notes

29. Ibid, 278.
31. Harley, 290.
Social Studies Fun. Interactive Map or Tour. Math Game - Decimals Focus. International Pizza Delivery - Online Game. Description: In International Pizza Delivery, users must deliver pizzas to all corners of the world using their latitude and longitude skills. In Coordinates, students learn latitude and longitude while learning the locations and names of the world’s nations. First, students are prompted to find the latitude coordinate. Once the latitude coordinate is found, the game locks the latitude position and the longitude lines animate into the map. Finally, students are prompted to find a point of longitude. UPGRADE TO. Learn More. About Who is Mr.N Contact. License Materials Teacher Pay Teachers Upgrade to MrN 365 Advertise.